
1

SEA-LEAP: Self-adaptive and
Locality-aware Edge Analytics Placement
Ivan Lujic, Student Member, IEEE, Vincenzo De Maio, Member, IEEE, Srikumar Venugopal

and Ivona Brandic, Member, IEEE

Abstract—Near real-time edge analytics requires dealing with the rapidly growing amount of data, limited resources, and high failure
probabilities of edge nodes. Therefore, data replication is of vital importance to meet SLOs such as service availability and failure
resilience. Consequently, specific input datasets, requested by on-demand analytics (e.g., object detection), can be present at different
locations over time. This can prevent exploitation of data locality and timely decision-making processes. State-of-the-art solutions for
on-demand edge analytics placement either fail in providing low-latency access to user-requested input data or do not consider data
locality. We propose SEA-LEAP (Self-adaptive and Locality-aware Edge Analytics Placement), a framework including a new
mechanism for tracking data movements, on top of which we devise a generic control mechanism. SEA-LEAP enables on-the-fly
placement of on-demand analytics considering the most appropriate dataset location that minimizes overall analytics requests
execution time. We conduct experiments using real-world (i) object detection application, (ii) image datasets as input, (iii) self-designed
benchmarks, and (iv) heterogeneous edge infrastructure using Kubernetes. Experimental results show the ability to efficiently deploy
on-demand analytics and reduce total latency by 65.85% on average by performing adaptive data movements, indicating a promising
solution for edge multi-cluster and hybrid environments.

Index Terms—Edge computing, analytics placement, data locality, distributed systems, autonomous, solution reference architectures.

F

1 INTRODUCTION

MODERN IoT applications such as public safety video
surveillance [1], predictive maintenance in smart

manufacturing [2], and traffic management in smart
cities [3], are characterized by strict latency requirements.
Due to the rapidly increasing number of IoT sensing de-
vices, data production is growing exponentially [4], with
negative effects on the latency of analytics required by IoT
applications. Edge computing, i.e., moving cloud processing
closer to data sources, has been proposed as a solution to
address these issues [5].

Still, the rapidly growing amount of data produced at the
edge affects traditional centralized data collection and pro-
cessing. Data can be transferred and replicated due to (i) lim-
ited storage capacities [6]; (ii) edge failure probabilities [7];
(iii) meeting certain service level objectives (e.g., data loss
tolerance [8]); (iv) workload balancing [9]. Consequently,
data can reside in locations different from where they were
initially produced. Since exploiting data locality is crucial
for latency-sensitive analytics requests, it is important to
combine tracking of data movements and control logic for
the timely placement of analytics applications.

Typical examples are edge video analytics applications.
Performing video analytics (e.g., object detection to extract
specific information of video frames) close to the source of
data (e.g., on edge servers such as traffic cameras or micro
data centers) is considered as the killer app for edge com-
puting [10]. For example, video analytics on traffic footages

• I. Lujic, V. De Maio and I. Brandic are with the Institute of Information
Systems Engineering, Vienna University of Technology, A-1040 Vienna,
Austria. E-mail: {ivan, vincenzo, ivona}@ec.tuwien.ac.at

• S. Venugopal is with the IBM Research Europe, Mulhuddart, Dublin 15,
Ireland. E-mail: srikumarv@ie.ibm.com

of a specific area could be submitted to detect a suspect’s
vehicle. However, sampled footage frames from a traffic
camera system can be stored at locations different from the
source node to ensure fault tolerance, affecting the latency
of on-demand analytics. This problem is present in other
event-driven scenarios, where critical decision-making pro-
cesses strongly depend on the timely placement of analytics
requests, such as finding lost children or pets [1], and failure
prevention in smart manufacturing [2]. Therefore, making
self-adaptive analytics placement to the most suitable lo-
cation is an important step toward improving the overall
latency of decision-making processes.

In typical placement strategies for data processing ap-
plications available in the literature, researchers focus on
traditional centralized data collection and analytics solu-
tions [11], [12], or placing data processing based on resource-
cost trade-offs [13], but do not discuss critical latency re-
quirements of such analytics applications. Others propose
strategies for latency-aware placement configurations of
data stream processing applications [14] and low-latency
data management on the distributed edge [15]. Many state-
of-the-art approaches for analytics placement address the
data locality from aspects such as edge-cloud workload
balance [16], resource usage and query accuracy trade-
off [17], or the fairness of cloud resource allocation [18].
Still, they do not consider the adaptive placement of on-
demand analytics for low-latency access to user-requested
data in the distributed edge environment. Data movement
tracking and locality-awareness for scheduling on-demand
analytics across distributed edge infrastructures are cur-
rently unsolved problems [19], [20].

To ensure efficient placement of on-demand analytics
considering data locality and lower analytics execution time,



2

we propose SEA-LEAP, a framework for Self-adaptive and
Locality-aware Edge Analytics Placement, featuring:

• a new architecture, enabling the exploitation of data
locality based on the tracking mechanism that manages
event-triggered registration of dataset movements
across different edge nodes;

• a generic control mechanism, allowing on-the-
fly adaptation and autonomous placement of on-
demand analytics to node locations storing required
input datasets.

• a placement optimizer, enabling on-demand an-
alytics placement to the most appropriate dataset
location that minimizes overall analytics requests
execution time.

Overall execution time represents the completion time
of the user analytics requests, which includes execution of
tracking and control mechanisms to find the location that
guarantees the lowest latency. We evaluate SEA-LEAP by
conducting experiments on (i) real-world video analytics
application; (ii) real-world sets of video frames as input
for the application; (iii) obtained network and inference
benchmarks, and (iv) heterogeneous edge infrastructure
using Kubernetes platform. Experimental results show that
SEA-LEAP is able to (i) autonomously deploy on-demand
analytics requests (e.g., object detection) considering data
locality, and (ii) reduce overall request execution time by
65.85% on average.

The main novelty lies in the combination of data move-
ment tracking and self-adaptive control logic for analytics
placement on different hardware, facilitating both code-to-
data and data-to-code movements. Our paper advances the
state-of-the-art approaches with a generic solution for de-
ploying on-demand analytics while dealing with data local-
ity issues. This can help users and developers to efficiently
and timely deploy requested analytics across different edge
infrastructures, indicating a promising solution for geo-
distributed edge multi-cluster and hybrid environments.

We describe a motivational use case and the importance
of data locality in Section 2. SEA-LEAP system design is
proposed in Section 3, while tracking and control parts are
detailed in Section 4 and Section 5, respectively. Section 6
shows the experimental setup, while Section 7 describes
SEA-LEAP evaluation and discussion. Related work is out-
lined in Section 8. Section 9 concludes the paper.

2 BACKGROUND

2.1 Motivational Use Case
We consider our InTraSafEd 5G project (Increasing Traffic
Safety with Edge and 5G) [21], as the motivational example
described in Fig. 1. It aims to improve traffic and pedestrian
safety through video analytics running on edge nodes. Once
data are collected, different analytics applications can query
collected data. Example of these analytics ranges from (i)
locating lost children or pets [1], (ii) timely locating suspects,
(iii) finding a vehicle suspected of violating rules in captured
footages (e.g., by recognizing license plates captured for
accessing restricted central business districts, low emission
zones), in a smart city. In such on-demand scenarios, critical
decision-making processes strongly depend on the strict

Fig. 1. An example smart city scenario to illustrate the problems of (i)
tracking dataset movements/replications due to high edge failure proba-
bilities, and (ii) timely placement of critical on-demand video analytics.

latency execution of edge analytics requests using specific
input datasets.

However, edge servers can fail to execute analytics ser-
vices for different reasons such as limited resources, power
outages, or network failures [7]. Consequently, in the context
of edge servers, it becomes necessary to replicate relevant
data and services to other nodes (black dashed arrow), to
meet Service Level Objectives (SLO), e.g., service and data
availability. Based on calculated failure probabilities, some
datasets can be replicated (partially or completely) to differ-
ent locations to avoid data loss or interruption of running
analytics services. To meet the low-latency requirements
of on-demand analytics [22] (e.g., finding suspects), they
should be placed at the same node where the dataset is
stored to reduce the impact of network latency. However, in
a geographically distributed edge infrastructure, replication
causes the required dataset to be present in location(s)
different from where it is produced.

Consequently, our challenges are to (i) keep track of
datasets, and identify where they are located at a specific
time point; (ii) identify which node location is the most
suitable to reduce the latency of analytics requests. Inspired
by the InTraSafEd 5G, we consider its benefits for running
on-demand analytics on heterogeneous edge servers such
as Raspberry Pi roadside devices with cameras attached to
smart traffic lights.

Definition 1. On-demand data analytics represents data process-
ing applications that are submitted to a computational infrastruc-
ture I in response to specific user requests R.

The main characteristics of on-demand data analytics
are: (i) they refer to specific input datasets [2], and (ii)
they have low-latency requirements [22]. In this work, on-
demand data analytics are represented as container-based
applications running services that process input data and
can be placed in different nodes of computational infrastruc-
ture (as in [23] and [24]). The input of on-demand analytics
is a finite dataset that can be stored in different locations.
We focus on a set of sampled video frames generated from
video-camera systems.

2.2 Locality-aware Edge Analytics Placement
Edge computing is a paradigm where computation is per-
formed on edge nodes, deployed near data sources. Edge
computing is the key to exploit data locality, i.e., processing
data closer to its origin, instead of collecting and processing



3

data far from its source [25]. Data locality is considered of
paramount importance to meet low-latency requirements
of on-demand analytics [26], [27]. However, identifying
the correct dataset location to timely perform processing
in the distributed edge is a challenging issue due to the
possible data transfers and replications. Therefore, we in-
troduce SEA-LEAP, a new framework allowing users and
developers to easily deploy on-demand analytics applica-
tions without knowing the current location of the required
datasets. Once required datasets are located by SEA-LEAP,
on-demand analytics are automatically deployed to the
most appropriate edge nodes, allowing analytics requests to
meet low-latency requirements and significantly improving
decision-making processes.

3 SEA-LEAP DESIGN

The design concept of SEA-LEAP is driven by the following
properties for on-demand edge analytics placement, namely,

• Data locality-awareness: as shown in the motiva-
tional scenario, data can change its locations over
geographically distributed and heterogeneous edge
nodes for different reasons, making it challenging to
exploit data locality. Thus, the framework should be
able to keep track of dynamic data movements and
enable efficient locality-aware data management.

• Autonomy: on-demand analytics requests, as shown
in the motivational scenario, often have low-latency
requirements, making it difficult to timely identify
the node minimizing overall request execution time.
For this reason, the framework should be able to (i)
find the most appropriate node location for analytics
placement and (ii) handle numerous requests on
time, with little or no human intervention in the
deployment process. To this end, we need to enable
autonomous analytics placements.

• Genericity: the computational edge infrastructure can
be heterogeneous regarding both hardware resources
and software configurations. Therefore, the frame-
work design should be generic and applicable to
work on top of existing systems by customizing the
logic of proposed components and services, improv-
ing the overall reusability.

Fig. 2 provides an overview of the proposed SEA-
LEAP architecture. We envision the on-demand analytics
placement scenario based on data locality. To manage data
locality-awareness with autonomous analytics placements,
we illustrate three main parts:

Edge sites represent sets of geographically distributed
edge nodes capable of executing on-demand analytics on
data coming from IoT devices. IoT devices constantly gen-
erate data, which are transmitted to the edge infrastructure
for temporary storage and future analytics.

Tracking mechanism is a component used for event-
triggered registration of datasets and for tracking their fu-
ture movements. It includes a monitoring service and meta-
dataset that stores location-related details about datasets,
enabling their dynamic tracking in the distributed edge.
We focus on datasets with fixed sizes, which are generated,
processed, and stored at the edge for future analytics. This is

Fig. 2. SEA-LEAP Architecture Overview.

typical in storage-limited edge nodes, since in many cases it
is enough to have a subset of data to preserve the analytics
accuracy [28]. To minimize overall completion time, the
control mechanism can trigger adaptive data movements.

Control mechanism is a component performing place-
ment of on-demand analytics. It contains: the meta sched-
uler and the placement optimizer. The meta scheduler re-
ceives the description of on-demand analytics with the
requested dataset name, and communicates with both the
meta-dataset and the placement optimizer. The placement
optimizer computes the most appropriate location for on-
demand analytics to minimize overall execution time. Fi-
nally, the meta scheduler performs the actual placement to
a target node and commands the analytics execution.

In Step 1, data generated from different IoT sensing
devices are transferred to edge nodes, where they can be
processed or stored for later analysis. In Step 2, datasets
can be moved or replicated to other nodes due to different
reasons such as fault tolerance. Any dataset generation,
as well as its replication or movement, are registered and
updated constantly within the tracking mechanism (Step 3).
For each dataset, current location-related details are stored
in a database called meta-dataset. Meta-dataset can include
information such as dataset id, dataset name, corresponding
cluster, location path, and data size. Once a user submits
the request description (Step 4), the meta-scheduler initiates
the automatic placement adaptation. In Step 5, the meta
scheduler extracts the required dataset name and retrieves
location-related details of the required dataset from the
database. We assume that a user knows the target dataset
id or name needed as an input for requested analytics.
Some of the proposed solutions include (i) access to a list
of already generated and existing dataset names (e.g., based
on a dataset catalog explained in Section 4), (ii) a consistent
and regulated, easy-to-remember naming of datasets. Con-
sidering that (i) required dataset can be present in multiple
nodes and (ii) different nodes can comply with analytics
requirements (e.g., resource capabilities), in Step 6, the meta
scheduler queries the placement optimizer to find the most
appropriate location for analytics among node location can-
didates. Finally, the analytics application is placed to the
most appropriate node (Step 7). The proposed SEA-LEAP
follows the service-oriented architecture (SOA), featuring
multiple parts and services that can be maintained indepen-
dently. The following sections describe all parts in detail.
Table 1 lists the main notations used in our approaches.



4

TABLE 1
Main Notations and Definitions

Notation Description
α An analytics application that requires input data.
dloc Variable representing the current dataset location.
dname Variable representing name of the dataset during the

data generation at the data source
dma A data management action (e.g., replication).
metadb Meta dataset database with location-related info.
KB A knowledge base containing edge-relevant information.

rcvmsg Variable containing request description for data mgmt.
rcvf Description containing the request for analytics placement.
Lap The most appropriate location for analytics placement.
L Matrix storing about node candidates for the placement.
D The set of datasets.
N The set of locations.
Λ The set of nodes where dataset d is stored.

l(ni, nj) Latency of network connection between ni and nj .
b(ni, nj) Bandwidth of network connection between ni and nj .

hops(ni, nj) Number of network hops between ni and nj .
size(d) The overall size of a dataset d.
inf time An average inference time on a target node.
no frames Number of image frames in a target dataset d.

4 TRACKING MECHANISM

Based on the architectural model, we describe the tracking
mechanism that is focused on data management and regis-
tration of edge data movements. Fig. 3 shows SEA-LEAP
agent-based monitoring service, which incorporates an
event-triggered registration of changes of data locations and
publish/subscribe-based tracking of data movements, while
Algorithm 1 shows pseudocode and the concept behind
the agent-based monitoring. Regarding the data locality-
awareness and autonomy properties, an autonomous software
agent is employed on top of each node, constantly moni-
toring and acting upon data management events. Location-
related details are stored in the meta-dataset database in-
dicating where the datasets are currently available and
accessible. The event-triggered data registration mechanism
(see Fig. 3(a)) consists of several consecutive phases:

Activation of node agents. Every node has an agent
listening to a known port (line 1, Algorithm 1). The while
loop (line 2) serves one client request for data management
action. This phase is executed only once on each node and
it is used in all the other phases. The received description of
a data management action triggers the following phases.

Request for data management. In this phase, different
requests for data management can be initiated (lines 3-4). We
define data management as any data manipulation process
including (i) generation of a new dataset, (ii) dataset repli-
cation or movement. Data management requests employ
location-related details about data and can be initiated from
(i) meta scheduler (described in Section 5.1), (ii) edge nodes,
(iii) edge providers, or (iv) other incorporated mechanisms
maintaining edge systems (e.g., load balancing, replication,
fault tolerance).

Location resolution. In this phase, based on the target
dataset, the location details are either (i) produced for newly
generated datasets or (ii) checked in the meta-dataset before
further actions. In the first case, a dataset is generated and
stored in an edge node. Details about dataset location are
saved in the meta-dataset and partially in the dataset catalog

(a) Event-triggered data registration (b) Pub/sub based data tracking

Fig. 3. SEA-LEAP monitoring service including (a) registration of
changes of data locations and (b) tracking of data movements.

(see Fig. 3(b)). Dataset catalog (DC), a lightweight key-value
store contains pairs of all generated dataset names and
initial locations where they are created (Step 1). It supports
the submission of the user’s analytics request (see Section
5), and can be accessed from meta-server or keeping a
synchronized copy locally. In the latter case (ii), the required
dataset already exists and meta-dataset is queried, if needed,
for retrieving location details.

Data management. In this phase, requested data man-
agement action (dma) is performed (line 5). Node agents
complete data management requests. A trivial example
datamgmt(fetch, dat x, n1) would fetch dataset dat x from
location n1. This phase is designed in a generic way, so it can
also be adapted with other data management operations by
edge infrastructure providers or deployed edge systems.

Location update. Once the previous data management
actions are done, it is required to update new information
in the meta-dataset. In this phase, a new connection to
the meta database is established and corresponding dataset
entries are updated (line 6). Once the database is updated,
the source node of the corresponding dataset is notified
via the pub/sub (publish/subscribe) channel enabling data
movement tracking.

In case of failures, error messages will be returned
in each phase. Furthermore, Fig. 3(b) shows the pub/sub
based tracking of data management. First, as shown in
the location resolution phase, DC stores existing and unique
dataset names (Step 1) included in the Knowledge Base
(KB). KB represents prior obtained and edge-relevant details
such as edge-specific network topology, node characteris-
tics, and analytics benchmarks. They provide a collection
of information necessary for analytics placement (explained
in Section 7). Edge node locations and produced datasets
can be numerous and distributed. Thus, regarding the scal-
ability of the tracking mechanism, the monitoring service
includes a pub/sub messaging system in which every edge

Algorithm 1 AgentBasedDatasetRegistration
1: Listening for data management requests
2: while TRUE do . serving one client request
3: Connect to client
4: parse(rcvmsg) . analyse received message
5: datamgmt(dma, dname, dloc) . data management applied
6: Update metadb, setting new node location dloc for given dname

7: Disconnect from client
8: end while



5

node (n1, n2, ..., nn) can be subscribed to topics representing
dataset names or ids that were initially produced at these
nodes (Step 2). Once the dataset location is changed in the
meta-dataset during the location update phase, the meta-
broker publishes the change to a specific topic (Step 3).
As a result, each node has information about the current
location of its datasets, facilitating further edge data man-
agement actions. We assume a pub/sub system, such as
MQTT (Message Queuing Telemetry Transport), due to its
communication scalability and minimum resource require-
ments [29]. Note that the tracking mechanism is essential
for enabling data locality-awareness, while the following
control mechanism primarily ensures the self-adaptive and
timely placement of edge analytics based on data locality.
The scalability of the tracking mechanism will be investi-
gated in future work.

5 CONTROL MECHANISM

The control mechanism is the cornerstone of SEA-LEAP
architecture. The goal is to enable self-adaptive placement
of an analytics application α considering a dataset location
dloc, based on two actions, namely,

• GuideMe: static placement of an analytics application
to the source node candidate initially storing the
requested dataset. If the input dataset is simultane-
ously present on multiple locations, the node ensur-
ing the lowest estimated analytics execution time is
selected as the target one;

• FollowMe: dynamic placement of an analytics appli-
cation to an alternative node candidate that mini-
mizes overall request execution time. In this case,
an adaptive dataset movement from the source to
the alternative node is necessary, before the analytics
placement and execution.

These actions can offer a continuous adaptation of ana-
lytics placements in highly distributed and networked edge
servers. Both actions rely on two important services of
the control mechanism, namely, the meta-scheduler and the
placement optimizer, described in the following.

5.1 Meta Scheduler
Accessing the dataset locations can be done by storing
location details in the meta-dataset (described in Section 4),
while placement adaptations are managed on-the-fly within
the meta scheduler. We assume that the meta scheduler
is accessible, and there can be multiple instances serving.
Algorithm 2 describes the meta scheduler life cycle in detail.
The scheduler continuously listens for new requests in lines
1-2. Once a user sends an analytics request description,
containing details for application execution, its format is
checked. If its format is valid (lines 3-5), the meta sched-
uler extracts information such as the name of the required
dataset id and analytics process α (line 6). Next, the meta-
dataset is checked and relevant information is retrieved
(lines 7-8). If corresponding information exists, the meta
scheduler will send details to the placement optimizer (line
9). The output of the placement optimizer represents the
node location that guarantees the lowest total latency for
the request and it is stored in the Lap (lines 10-11). In case

Algorithm 2 MetaScheduler
1: while TRUE do . loop serving one client’s requests
2: rcvf ← waitConnection() . waiting for incoming connections
3: if rcvf = fmt then . checking the format of analytics request
4: continue
5: end if
6: parse(rcvf ) . extracting needed information (dname, α)
7: Create matrix Λ with location-related information about d
8: Λ← retrieve(dname) . retrieving details from metadb
9: if Λ 6= empty then

10: Lap ← PlacementOptimization(Λ)
11: Adapt deployment templates with the Lap and other info
12: if Lap is not one of the initial location from Λ then
13: Replicate dataset d to Lap using Algorithm 1
14: end if
15: deploy(R,Lap) . placing analytics to node location Lap

16: end if
17: end while

the usage of Lap requires adaptive data movement, the meta
scheduler will follow the procedure from Algorithm 1 (lines
12-14). Finally, the meta scheduler performs the placement
of α in the node Lap (line 15).

5.2 Placement Optimizer

The goal of the placement optimizer is to find an edge loca-
tion that minimizes the total latency. It is designed to satisfy
users’ latency requirements for timely decision-making pro-
cesses. Total latency is impacted by (i) analytics execution
time that depends on node and dataset characteristics, (ii)
data transfer that is affected by network characteristics.

We consider analytics placement as a minimization prob-
lem with latency as an objective. We assume that users can
submit requests for executing data analytics applications
over different input datasets, whose location is unknown
to the user. Computational infrastructure is modeled as a
graph I = (N , E) (as used in [30]), such that N is a set
of different nodes where applications and datasets can be
placed, and E models the network connections between
nodes. For each (ni, nj) ∈ E , with ni, nj ∈ N , we define
both latency l(ni, nj) and bandwidth b(ni, nj) measure-
ments of network connection (see Section 6.3).

We also define a set D of different generated datasets,
that can be initially stored in one or multiple nodes n ∈ N
over a geographical area. In the latter case, we assume
that those datasets are always synchronized. Further, each
dataset d is defined by its size size(d) and the set Λ(d)
of nodes where d is stored. Users submit a request R =
(α, dname) to I , where α is an analytics application, and
dname is the name of the input dataset for α. For each R,
SEA-LEAP goal is to identify location Lap for α and d that
minimizes R total latency, i.e.,

Lap = arg min
L[i]

(L[i]t latR ), L(α) = L(d). (1)

L is a matrix that contains location candidates with calcu-
lated total latency, including a potential data transfer and
the analytics execution time on the specific node candidate:

TL = tmvd(ni,nj) + t(R,nj), (2)

where ni initially stores the dataset d (ni ∈ Λ(d)), and nj
is an alternative node candidate (nj ∈ L(d)). In case of ni
as the initial candidate, i.e., ni = nj , then TL = t(R,ni).



6

TABLE 2
Edge Node Types Used in the Experimental Setup, Technical Details and Inference Latency Benchmarks for Each Node Type.

Node label Node type CPU RAM # of nodes Edge TPU Inference/frame [ms]
A Raspberry Pi 4 Quad-core Cortex-A72 (ARMv7) at 1.5GHz 4GB 2 yes 17.81
B Raspberry Pi 4 Quad-core Cortex-A72 (ARMv7) at 1.5GHz 4GB 1 no 250.74
C Raspberry Pi 3 B+ Quad-core Cortex-A53 (ARMv7) at 1.4GHz 1GB 8 no 500.62

Otherwise, we define tmvd(ni,nj) as the time required to send d
from ni to nj , i.e.,

tmvd(ni,nj) = l(ni, nj) + hops(ni, nj) ·
size(d)

b(ni, nj)
, (3)

where hops(ni, nj) is the number of hops between ni and
nj . Further, we define t(R,nj) as the estimated time re-
quired to complete analytic request R(α, d) on node nj , i.e.,

t(R,nj) = inf time(nj) · no frames(d), (4)

where inf time(nj) is an average inference time per frame,
and no frames(d) is the corresponding number of frames
in target dataset d (see Section 6.3).

Algorithm 3 describes the placement optimizer. First,
two data structures are created to store location candidates
for analytics placement (lines 1-2): L, containing a total esti-
mated latency, and LKB , which stores potential candidates
retrieved from KB if they satisfy certain conditions, e.g.,
nodes with better inference time compared to the source
node(s) (line 3). Next, each node containing the requested
dataset (line 4) will initially become a candidate for placing
the required analytics (lines 5-7). Then, even if the required
dataset is present on multiple nodes, the placement depends
on the total latency of each candidate (line 6). In lines 8-12,
we calculate total latency for each new candidate, since due
to the heterogeneity of the infrastructure it is possible to
achieve a lower total latency on a node with more resources,
despite the data transfer (line 10). Consequently, the most
appropriate node location Lap is the one offering the lowest
total latency (line 14), returned in line 15. We consider
three scenarios: (i) the dataset is stored on a single node
with the lowest estimated analytics latency; (ii) the dataset
is stored on multiple and heterogeneous nodes, therefore
the most powerful will run the analytics; and (iii) edge
node(s) storing the required dataset do not have resource
capabilities to meet latency requirements, thus, the dataset
will be placed to a node that minimizes overall request
execution time.

Algorithm 3 PlacementOptimizer
Input: Set of nodes storing req. dataset Λ
Output: The most appropriate location Lap

1: Create matrix L forming location candidates with est. total latency
2: Create matrix LKB for potential location candidates from KB
3: LKB ← KB(ntype > Λ(ntype)) . retrieving alternative candidates
4: for each ninit ∈ Λ do
5: Add node ninit to L
6: Calculate TL(ninit) for the initial node using (4)
7: L(ninit, TL)← TL(ninit)
8: for each nnew ∈ LKB do
9: Add node nnew to L

10: Calculate TL(nnew) for new nodes locations using (2), (3) and (4)
11: L(nnew, TL)← TL(nnew)
12: end for
13: end for
14: Lap ← Li with minimum total latency . Compute Lap using (1)
15: Return Lap

Theorem 1. SEA-LEAP complexity is O(n ·m+ k).

Proof. SEA-LEAP complexity is determined mainly
by MetaScheduler and PlacementOptimizer.
MetaScheduler complexity (see Algorithm 2) depends on
PlacementOptimizer (see Algorithm 3), since all other
lines have complexity O(1). The for loop (line 4) from
Algorithm 3 iterates over the set of node locations Λ that
simultaneously store the requested dataset. Entering the
inner for loop in line 8, it iterates over each new node
location candidate and calculates the estimated total latency
in line 10, resulting in complexity of O(n ·m), where n is the
number of replicas, representing the initial node candidates,
and m is the number of alternative node candidates. Next,
searching the candidate with the lowest total latency in
line 14 has the complexity of O(k), where k is the total
number of node candidates. Other lines are O(1), resulting
in the overall complexity of O(n ·m+ k).

O(n · m + k) is acceptable in our context, since (i) n is
expected to be either 1 due to limited edge storage capaci-
ties [6] or small while still guaranteeing the resilience with
fewer replicas as showed in [7], and (ii) m is limited to both
nodes whose types match the types from KB benchmarks
and that have lower inference time per frame than initial
nodes from the set Λ.

6 EXPERIMENTAL SETUP

SEA-LEAP is implemented using Python, while the exper-
imental evaluation of the proposed SEA-LEAP architecture
uses Kubernetes for deploying analytics applications. Our
emulation-based evaluation is based on real traces and
using RuconLiveLab, our physical edge infrastructure con-
sisting of 11 Raspberry Pi (RPi) single-board computers,
available in three different configurations (see Table 2).

6.1 Implementation Details

We first introduce technologies used for the experimental
evaluation of SEA-LEAP. Considering the deployment of
analytics applications, many researchers and industries are
revealing nowadays the rapid adoption of Kubernetes or-
chestration platform [23], [24], relying on master-worker
architecture. The master node is, in our scenario, respon-
sible to assign a container-based analytics application to
one of the available nodes in the corresponding cluster.
Containerized applications are typically using Docker, a
container platform used to build and isolate applications
with a relevant stack of services. Here, to deploy an analytics
application to edge nodes, a docker image has to be included
in the Kubernetes manifest, i.e., deployment file, typically
defined in YAML (see Fig. 6).



7

6.2 Target Application
We consider as our target application object detection, a typ-
ical video analytics processing in which an input set of video
frames is analyzed. Analytics output is a list of detected
objects with confidence levels and their positions on the
image. We assume that edge keeps only a limited number
of frames, e.g., sampling an industry-standard frame rate of
30fps and filtering only frames with significant changes or
object movements, due to the limited capacity of edge nodes
and efficient bandwidth usage [10].

In this experimental setup, we used the computation
logic from our real-world application InTraSafEd 5G, used
to perform object detection analytics to increase traffic and
pedestrian safety with edge and 5G in the city of Vienna.
The application runs a quantized version of SSD MobileNet
v2 model [31], a lightweight and pre-trained convolutional
neural network (CNN) based object detection. We docker-
ized the object detection logic and expose it as a service
running in a container. Docker images for all node types,
with and without edge TPU attached (Coral USB Acceler-
ator enabling high-performance neural network inference),
are available on the Docker hub repository1, while the SEA-
LEAP implementation is accessible on the GitHub reposi-
tory2. Further, we used a PostgreSQL database running in
a docker container to store metadata, i.e., location-related
details about existing datasets.

6.3 Input Datasets
We evaluate proposed approaches using datasets typically
used in computer vision analytics applications such as ob-
ject detection and recognition [25]. To perform a complete
evaluation, we select datasets of a different average size
of image files, which allows having a wide diversity in
terms of resolution, dimensions, and color depth. The main
characteristics of datasets are presented in Table 3. For each
dataset, we show the average size-frame ratio (γ) calculated
as γ(d) = size(d)/no frames(d), impacting SEA-LEAP
placement optimizer (explained in Section 7.2).

Dataset Intrasafed comes from the InTraSafEd 5G project,
containing sampled video frames from the chosen Vienna’s
intersection used for the real-time detection of critical sit-
uations and to support drivers in avoiding accidents. The
frames are taken by traffic cameras and show critical situa-
tions where objects like pedestrians, cyclists, and pets, can
appear in drivers’ blind spots when turning on intersections.

Dataset Penn-Fudan comes from an image database used
for object detection and recognition on areas around the
University of Pennsylvania and Fudan University [32]. Se-
lected frames represent various image qualities and angles
of captured objects (pedestrians, bikes, and cars).

Datasets Sherbrooke and René-Lévesque come from the
cameras monitoring different intersections, used for detect-
ing and tracking multiple objects of various types in outdoor
urban traffic surveillance [33]. Selected image frames repre-
sent different camera angles and resolutions, namely, a low
camera monitoring cars, trucks, and pedestrians moving at
an intersection (Sherbrooke) and a high camera covering three
intersections with cars and bikes (René-Lévesque).

1. https://hub.docker.com/r/ilujic/inference-arm32v7/
2. https://github.com/lujic/sea-leap

TABLE 3
Main Characteristics of Datasets.

Dataset name Frames Size [MB] Size/frame [MB] Dimensions
Intrasafed 600 91.4 0.15 1280x720

Penn-Fudan 60 25.2 0.42 various
Sherbrooke 1800 154 0.09 800x600

René-Lévesque 3600 1011.8 0.28 1280x720

6.4 Testbed Configuration
In the experimental setup, we emulated a real-world system
from our InTraSafEd 5G project, where node communication
is handled by the MQTT broker, communicating to distant
edge nodes deployed on traffic lights near a short-range
cellular base station. Since latency is a critical requirement
for our scenario, we evaluated the latency of deploying
the broker either at the edge (inside the TU Wien’s in-
frastructure) or using cloud service (hosted on MyQttHub).
Network latency evaluation is shown in Fig. 4. We can see
that edge deployment significantly reduces the latency (by
14.01%, 70.18%, 83.04% on average for 3G, 4G and 5G,
respectively), making the edge meta-server placement as the
best option for our setup.

Emulating and extending this real-world scenario, Fig. 5
shows our testbed configuration as well as an initial setup
based on different edge sites (E1-E5). Edge sites represent
small cells in a cellular network, featuring short-radius cov-
erage of a small cell base station (as used in [30]), providing
specific network connection types. Each site can contain one
or multiple edge clusters, where in our setup contains multi-
node (i.e., E1 and E3 including 3-node clusters, E2 including
2-node cluster) and single-node (i.e., E4 and E5) Kubernetes
clusters. Edge meta-server represents a more reliable node
(e.g., edge micro data center), able to communicate with
edge nodes within different sites. Meta-scheduler receives
from a user the description of an analytics request with a
specific dataset.

We evaluate our emulation-based approach with the
containerized analytics application, where as a baseline,

Fig. 4. Network latency for cloud/edge meta-server placement.

TABLE 4
Network latency and bandwidth benchmark (Vienna’s suburb).

Network type Latency [ms] Bandwidth [Mbps]
3G 247.92 8.81
4G 23.44 41.43
5G 13.83 66.55



8

(a) The emulation-based scenario and network topology.

(b) Edge infrastructure overview.

Fig. 5. SEA-LEAP testbed configuration.

we measured inference times on the real-world datasets
using our physical edge nodes, as described in Table 2. For
each node type, we show the average inference time per
single image. Results are averaged over 100 image frames
for statistical significance since by adding more images the
differences in inference time show a deviation of 39µs on
average. These results are saved in the KB, which is used
by Algorithm 3 for selecting the node which minimizes
the latency of edge analytics placement. Further, Table 4
shows different latency and bandwidth measurements ob-
tained using standard iperf application. The representative
values are weighted averages of bandwidth collected on
different network types in a suburb area of Vienna from the
InTraSafEd 5G project and will be used in our placement
optimizer (described in Section 7.2).

7 SEA-LEAP EVALUATION

7.1 Static Placement Evaluation

Based on the GuideMe action (Section 5), the SEA-LEAP
placement optimizer will enable the execution of the user’s
request on a node storing the required dataset, i.e., with-
out considering alternative candidates (considered in Sec-
tion 7.2). In the case of multiple locations storing the dataset,
a node showing better performances (node type with a
lower inference benchmark observation) will be prioritized.

Otherwise, the algorithm will randomly select one of them.
However, to enable the analytics execution on a target node
using the requested dataset, the meta-scheduler needs to
add a set of placement-specific details into a Kubernetes
deployment file.

In our design, the meta-scheduler already stores different
deployment templates that will be adapted with a specific
set of information such as the node location, appropriate
container image of the analytics application, and the dataset
path on the target node (using hostPath as a volume). A
simple example of an adapted deployment file is showed in
Fig. 6. Based on specific lines from this description (i.e., the
one including keyword nodeName), a distant master node
will know where to place the analytics application in its
cluster using the default scheduler. Beforehand, the edge
meta-server is created as a single-node Kubernetes cluster
and enabled to communicate to multiple clusters, using so-
called Kubernetes configuration files with needed details
(e.g., IP addresses of master nodes from our testbed edge
sites). Followed by a meta-scheduler command to process a
certain input dataset on the exposed analytics application,
the obtained results can be forwarded back to a user. That
said, the proposed SEA-LEAP meta-scheduler is designed as
a new service that can be used on top of existing schedulers
as a feature in different edge scenarios that require data
locality-aware analytics placement.

7.2 Adaptive Data Movement Evaluation

In this experiment, we want to evaluate the FollowMe action
(Section 5). SEA-LEAP placement optimizer will consider
alternative location candidates different than the initial node
storing the required dataset, and select the option with
the lowest total latency. Thus, the placement algorithm
estimates the total latency (based on details from KB) in-
cluding the transfer of requested data from the source to an
alternative location. Fig. 7 shows the results of the SEA-
LEAP placement optimizer applied to each dataset from
Table 3. In this representative example, the source node
location of a dataset is set to the edge site E1. For that reason,
the source location from E1 represents at the same time an
initial candidate for analytics placement. Other alternative
candidates will include additional network latency due to

Fig. 6. SEA-LEAP deployment YAML file example.



9

(a) Intrasafed (b) Penn-Fudan (c) Sherbrooke (d) René-Lévesque

Fig. 7. SEA-LEAP placement calculation of node location candidates in different edge sites, driven by GuideMe and FollowMe actions. It is based
on network connection benchmarks from a real-world edge location. For all cases, the source location of the dataset is set to E1.

needed dataset transfer. Green and yellow shaded locations
show first and second-best candidates, respectively.

For dataset Intrasafed (Fig. 7(a)), the selected appropriate
node location for analytics placement in each network type
results in moving the dataset from the source node. In all
cases of 3G (low), 4G (medium), and 5G (high) network
conditions, we can decrease the total latency by 13.47%,
78.81%, and 85.46%, respectively, by moving the dataset to a
candidate location in E5. For dataset Penn-Fudan (Fig. 7(b)),
in low network conditions, the selected appropriate node
location for analytics placement will be the source location,
while for medium and high network conditions the total
latency becomes 47.77% and 66.14% lower by moving
dataset. Also, even in scenarios where the most appropriate
location cannot host the analytics application or the dataset
(e.g., because of limited capacity, high failure probabil-
ity), selecting the second-best candidate (E4) can achieve
17.44% and 29.70% lower total latency for medium and
high network conditions, respectively. For dataset Sherbrooke
(Fig. 7(c)), for all network types, moving dataset can bring
49.86% (3G), 86.54% (4G), and 90.28% (5G) lower latency
than in the source location initially storing the dataset. The
dataset René-Lévesque (Fig. 7(d)) with the largest number of
frames and overall size can benefit from better network con-
ditions, achieving 63.92% and 76.20% lower total latency for
medium and high bandwidth availability, respectively.

To evaluate optimizer’s applicability to near real-time
systems, we measure its runtime, included in the total la-
tency, averaged over 100 times for statistical significance. We
observe an average runtime of 1.41ms for the real testbed
(Fig. 5). We also evaluate average runtime by increasing
number of candidate nodes up to 100, resulting in 13.89ms
and 26.29ms respectively with 1 or 2 source node locations.

7.3 Discussion

Results show benefits of SEA-LEAP, i.e., it allows (i) au-
tonomous placement of analytics requests, and (ii) the self-
adaptation to data locality by considering both network and
node candidate characteristics. For example, although node
types A and B have respectively 28x and 2x lower inference
time per frame compared to the source node type C (see
Fig. 5), not all datasets benefit from their movements if
available bandwidth is low.

Despite edge sites’ different network characteristics, the
network performance depends on the network bound of the
node storing the dataset. As described in Section 5.2, the
total latency of placing analytics to new locations is also
impacted by other factors, i.e., network latency, number of
hops, analytics execution time, and dataset size. Still, based
on experimental results, in specific cases moving the dataset
allows an average total latency reduction by 65.85%. Fig. 8
shows the SEA-LEAP placement decision rule and which
aspects mostly have an impact on whether to move data
close to deployed on-demand analytics or vice versa. The
estimated total latency of analytics placement is largely af-
fected by two main aspects, namely, network bound (avail-
able bandwidth) and compute (node performance) bound.

Fig. 8(a) shows the relation between the average image
file size and network throughput. We see that to a higher
bandwidth corresponds a higher network bound for trans-
ferring images from a specific dataset, but does not hold
for the compute-bound of a specific node candidate. This is
because the target inference application resizes each input
frame to the same dimension due to performance reasons.
Since resizing has no effect on object detection accuracy,
also average inference per frame (i.e., compute-bound) is
unaffected. Consequently, computation time per node type
depends exclusively on the number of input image frames.

For example, in Fig. 8(b), the number of input image
frames for each dataset is 60, while the initial node candi-
date is a source node type B, and only nodes with lower
inference time per frame (i.e., type A) are evaluated as
alternative nodes. The solid black line shows the compute-
bound of the source node B as the baseline, i.e., the total
latency of running requested analytics on the dataset in
the source node is equal to ∼15s (60 · 250.74ms). Dashed
lines show the estimated total latency of running analytics
in alternative nodes, including data transfer over different
network characteristics with two hops. With the available
bandwidth in the source node, the placement optimizer de-
cides whether to place analytics to (i) initial dataset location
(GuideMe) for all results above the baseline, or (ii) a new
node to which the dataset is moved (FollowMe) for all results
below the baseline. Our solution shows that considering
data locality in edge analytics placement can significantly
improve overall analytics requests execution time.



10

(a) Network bound

(b) Placement decision

Fig. 8. SEA-LEAP placement decision. Subfigure (a) shows network
bounds for various image file sizes. Subfigure (b) shows a borderline of
placing analytics between the source node B and a new node A, among
different datasets (60 frames) and available bandwidths with two hops.

7.4 Assumptions and Limitations

The SEA-LEAP placement optimizer estimates total latency
for initial and alternative locations based on prior obtained
edge metrics such as network characteristics (e.g., network
types and number of hops between edge sites) and analytics
benchmarks on node types. Also, we assume in our setup
that edge nodes have access to existing docker images
of analytics applications. Still, we partially address these
issues by designing SEA-LEAP parts as generic services,
which can be easily extended to consider (i) other analytics
applications and datasets (e.g., critical time series analytics
for failure prevention in smart manufacturing), (ii) different
network topologies and characteristics, and (iii) conditions
for filtering location candidates for analytics placement.

In the proposed solution, a centralized edge meta-server
represents a single point of failure, which could affect SEA-
LEAP reliability. Also, we assume a network of edge servers
managed by trusted infrastructure providers controlling
access to edge computing resources. Data security and
privacy issues are delegated to the trusted infrastructure.
Even though accessing metadata via the meta-scheduler or
through the tracking mechanism already provides access
control, additional protection measures could be taken in
security-critical scenarios (e.g., in use cases with sensitive
information). Lastly, we focus on data locality, while re-
source allocation is handled by Kubernetes. SEA-LEAP can
be integrated on top of existing systems such as Kubernetes,
facilitating data locality-aware edge analytics placement.

8 RELATED WORK

Analytics placement and data management. Analytics place-
ment at the edge has been discussed in several recent
works. In [12], the authors propose a service-oriented re-
source management framework for fog computing focusing
on service reliability. The paper [13] proposes EdgeEye, a
service enabling the development and execution of video
analytics applications. EdgeBox [11] is an architecture to
improve automatic event detection in edge near real-time
video analytics. However, these works limit placement to
a specific cloud/edge location. Authors in [25] discuss the
decentralized and federated edge infrastructure, focusing on
a scalable approach to perform data collection and video
analytics at the edge. Still, these approaches do not consider
data locality and adaptive analytics placement. Current data
management approaches adopt storage services configured
toward centralized data aggregation [34] or geo-distributed
data storage [35]. The work [36] surveys existing solutions
for IoT data management. In [10], the relationship between
resource availability and accuracy of edge-cloud video an-
alytics are investigated, without considering data locality.
In [19], Firework system is described, facilitating distributed
data processing requests, considering only specific locations.

Latency-aware scheduling and data locality. The work [37]
addressed the offloading of computation-intensive tasks
on edge nodes as an optimization problem. The proposed
scheduling approach minimizes latency by static offload-
ing of dependent tasks according to input data. In [14]
latency-aware placement of data stream analytics applica-
tions is proposed, while [15] performs low-latency data
management over geo-distributed and heterogeneous edge
infrastructures. We focus on a latency-aware placement of
on-demand analytics using data locality. The exploitation
of data locality has been considered by other works in
literature. For example, [20] discusses the concept of Se-
mantic Cache, which employs a caching technique for edge
analytics while reducing latency compared to cloud-only
inference. In [38], the spatio-temporal locality of analytics
is used to improve workload balancing between edge and
cloud servers. Other works for analytics placement exploit
data locality considering the edge-cloud workload balance
perspectives [16], the trade-off between the resource usage
and query accuracy [17], or the fairness of cloud resource
allocation [18]. However, these works either do not consider
the autonomous placement of on-demand analytics or focus
on different aspects than minimizing requests execution
time. We bridge these gaps by considering data locality in
the self-adaptive placement of on-demand edge analytics.

Placement decision. The service placement decisions and
trade-offs between local execution and remote execution are
discussed in voluntary-based computing environments [39]
and micro-cloud infrastructures [40]. Further, [41] proposes
replica management and replica selection strategies in data
grids, based on data mining techniques. Furthermore, con-
cerning network service chaining at the edge, [42] looked
at latency-aware service execution through software-defined
approaches. Most of these placement decisions are based on
either network-performance or resource allocation aspects.
In this paper, we target data locality-aware, generic and
self-adaptive mechanism that facilitates the edge analyt-



11

ics deployment across different edge infrastructures, while
minimizing overall execution time for on-demand analytics.

Big edge data analytics. In [43], big data processing at
the edge is discussed from the point of view of energy-
efficient edge scheduling and impact of energy on QoS. [44]
established a framework for offloading tasks to the edge,
focusing mostly on minimizing the delay and cost of the
computation. In [45], the bandwidth-adjustment problem
in video-streaming is addressed, proposing a framework to
reduce network traffic and adapt to conditions of mobile
users. Other works address caching of mobile big data traffic
at the edge [46] or enable federated query evaluations across
cloud and fog nodes to reduce communication [47], but data
locality-aware analytics placement is not considered.

9 CONCLUSIONS AND FUTURE WORK

Executing on-demand edge analytics brings critical chal-
lenges to (i) identify locations of requested input datasets,
and (ii) determine the target computational node where an-
alytics must be deployed to minimize the overall completion
time of user analytics requests. We propose SEA-LEAP (Self-
adaptive and Locality-aware Edge Analytics Placement)
framework to address the aforementioned issues.

SEA-LEAP includes a tracking mechanism for event-
triggered data management and registration of data move-
ments. On top of it, we propose a generic control mechanism
featuring a meta-scheduler and placement optimizer. Our
solution allows self-adaptive, on-the-fly placement of on-
demand analytics based on data locality, and minimizes
overall request execution time by performing adaptive data
movements. We evaluate SEA-LEAP by considering on-
demand video analytics application using our physical edge
infrastructure and benchmarks. Results show benefits for
users and developers, automating the placement of analytics
requests and reducing the total latency by 65.85% on aver-
age for certain network and node characteristics. We believe
that SEA-LEAP is a valuable step towards data locality-
aware placements of on-demand analytics for edge multi-
cluster or hybrid environments.

In the future, we plan to consider the single point
of failure of the meta-scheduler, proposing a solution to
improve scalability and reliability of meta-scheduler, i.e.,
by using multiple instances and implementing replication
strategies of meta-dataset. We also plan to investigate the
scalability of the tracking mechanism by experimenting with
different edge storage technologies such as Ceph, Minio, or
other object storage technologies. Finally, we plan to further
investigate the privacy and the data protection of SEA-
LEAP, and extend the management of status data by adding
an improved monitoring infrastructure.

ACKNOWLEDGMENTS

The work described in this paper has been partially funded
through the Rucon project (Runtime Control in Multi
Clouds), FWF Y 904 START-Programm 2015, 5G Use Case
Challenge InTraSafEd 5G (Increasing Traffic Safety with
Edge and 5G) funded by the City of Vienna and supported
through Ivan Lujic’s netidee scholarship by the Internet
Foundation Austria. Part of this research was carried out
during Ivan Lujic’s internship at IBM Research-Ireland.

REFERENCES

[1] Q. Zhang, H. Sun, X. Wu, and H. Zhong, “Edge video analytics
for public safety: A review,” Proceedings of the IEEE, vol. 107, no. 8,
pp. 1675–1696, 2019.

[2] P. Patel, M. I. Ali, and A. Sheth, “On using the intelligent edge
for iot analytics,” IEEE Intelligent Systems, vol. 32, no. 5, pp. 64–69,
2017.

[3] Z. Ning, J. Huang, and X. Wang, “Vehicular fog computing: En-
abling real-time traffic management for smart cities,” IEEE Wireless
Communications, vol. 26, no. 1, pp. 87–93, 2019.

[4] E. Ahmed, I. Yaqoob, I. A. T. Hashem, I. Khan, A. I. A. Ahmed,
M. Imran, and A. V. Vasilakos, “The role of big data analytics in
internet of things,” Computer Networks, vol. 129, pp. 459–471, 2017.

[5] J. Ren, Y. Pan, A. Goscinski, and R. A. Beyah, “Edge computing for
the internet of things,” IEEE Network, vol. 32, no. 1, pp. 6–7, 2018.

[6] I. Lujic, V. De Maio, and I. Brandic, “Resilient edge data manage-
ment framework,” IEEE Transactions on Services Computing, vol. 13,
no. 4, pp. 663–674, 2020.

[7] A. Aral and I. Brandic, “Learning spatiotemporal failure depen-
dencies for resilient edge computing services,” IEEE Transactions
on Parallel and Distributed Systems, pp. 1–1, 2020.

[8] C. Wang, C. Gill, and C. Lu, “Adaptive data replication in real-
time reliable edge computing for internet of things,” in 2020
IEEE/ACM Fifth International Conference on Internet-of-Things Design
and Implementation (IoTDI). IEEE, 2020, pp. 128–134.

[9] Q. Fan and N. Ansari, “Towards workload balancing in fog
computing empowered iot,” IEEE Transactions on Network Science
and Engineering, 2018.

[10] G. Ananthanarayanan, P. Bahl, P. Bodı́k, K. Chintalapudi, M. Phili-
pose, L. Ravindranath, and S. Sinha, “Real-time video analytics:
The killer app for edge computing,” computer, vol. 50, no. 10, pp.
58–67, 2017.

[11] B. Luo, S. Tan, Z. Yu, and W. Shi, “Edgebox: Live edge video
analytics for near real-time event detection,” in 2018 IEEE/ACM
Symposium on Edge Computing (SEC). IEEE, 2018, pp. 347–348.

[12] M. Aazam and E.-N. Huh, “Dynamic resource provisioning
through fog micro datacenter,” in 2015 IEEE international confer-
ence on pervasive computing and communication workshops (PerCom
workshops). IEEE, 2015, pp. 105–110.

[13] P. Liu, B. Qi, and S. Banerjee, “Edgeeye: An edge service frame-
work for real-time intelligent video analytics,” in Proceedings of the
1st International Workshop on Edge Systems, Analytics and Network-
ing, 2018, pp. 1–6.

[14] A. da Silva Veith, M. D. de Assuncao, and L. Lefevre, “Latency-
aware placement of data stream analytics on edge computing,” in
International Conference on Service-Oriented Computing. Springer,
2018, pp. 215–229.

[15] H. Gupta, Z. Xu, and U. Ramachandran, “Datafog: Towards a
holistic data management platform for the iot age at the network
edge,” in {USENIX} Workshop on Hot Topics in Edge Computing
(HotEdge 18), 2018.

[16] Y. Guo, S. Wang, A. Zhou, J. Xu, J. Yuan, and C.-H. Hsu, “User
allocation-aware edge cloud placement in mobile edge comput-
ing,” Software: Practice and Experience, 2019.

[17] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “Videoedge: Processing camera streams
using hierarchical clusters,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 2018, pp. 115–131.

[18] J. Ru, Y. Yang, J. Grundy, J. Keung, and L. Hao, “An efficient
deadline constrained and data locality aware dynamic scheduling
framework for multitenancy clouds,” Concurrency and Computa-
tion: Practice and Experience, p. e6037, 2020.

[19] Q. Zhang, Q. Zhang, W. Shi, and H. Zhong, “Firework: Data
processing and sharing for hybrid cloud-edge analytics,” IEEE
Transactions on Parallel and Distributed Systems, vol. 29, no. 9, pp.
2004–2017, 2018.

[20] S. Venugopal, M. Gazzetti, Y. Gkoufas, and K. Katrinis, “Shadow
puppets: Cloud-level accurate {AI} inference at the speed and
economy of edge,” in {USENIX} Workshop on Hot Topics in Edge
Computing (HotEdge 18), 2018.

[21] I. Lujic, V. D. Maio, K. Pollhammer, I. Bodrozic, J. Lasic, and
I. Brandic, “Increasing traffic safety with real-time edge analytics
and 5g,” in Proceedings of the 4th International Workshop on Edge
Systems, Analytics and Networking, 2021, pp. 19–24.

[22] B. Cheng, A. Papageorgiou, and M. Bauer, “Geelytics: Enabling
on-demand edge analytics over scoped data sources,” in IEEE
International Congress on Big Data, 2016, pp. 101–108.



12

[23] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards
network-aware resource provisioning in kubernetes for fog com-
puting applications,” in 2019 IEEE Conference on Network Soft-
warization (NetSoft). IEEE, 2019, pp. 351–359.

[24] P.-H. Tsai, H.-J. Hong, A.-C. Cheng, and C.-H. Hsu, “Distributed
analytics in fog computing platforms using tensorflow and kuber-
netes,” in 2017 19th Asia-Pacific Network Operations and Management
Symposium (APNOMS). IEEE, 2017, pp. 145–150.

[25] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha,
W. Hu, and B. Amos, “Edge analytics in the internet of things,”
IEEE Pervasive Computing, vol. 14, no. 2, pp. 24–31, 2015.

[26] M. Breitbach, D. Schäfer, J. Edinger, and C. Becker, “Context-
aware data and task placement in edge computing environments,”
in 2019 IEEE International Conference on Pervasive Computing and
Communications (PerCom. IEEE, 2019, pp. 1–10.

[27] C. Li, J. Tang, H. Tang, and Y. Luo, “Collaborative cache allocation
and task scheduling for data-intensive applications in edge com-
puting environment,” Future Generation Computer Systems, vol. 95,
pp. 249–264, 2019.

[28] H. B. Pasandi and T. Nadeem, “Convince: Collaborative cross-
camera video analytics at the edge,” in 2020 IEEE International
Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops). IEEE, 2020, pp. 1–5.

[29] T. Rausch, S. Nastic, and S. Dustdar, “Emma: Distributed qos-
aware mqtt middleware for edge computing applications,” in 2018
IEEE International Conference on Cloud Engineering (IC2E). IEEE,
2018, pp. 191–197.

[30] V. De Maio and I. Brandic, “Multi-objective mobile edge provision-
ing in small cell clouds,” in Proceedings of the 2019 ACM/SPEC In-
ternational Conference on Performance Engineering, 2019, p. 127–138.

[31] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recogni-
tion, 2018, pp. 4510–4520.

[32] L. Wang, J. Shi, G. Song, and I.-F. Shen, “Object detection combin-
ing recognition and segmentation,” in Asian conference on computer
vision. Springer, 2007, pp. 189–199.

[33] J.-P. Jodoin, G.-A. Bilodeau, and N. Saunier, “Urban tracker:
Multiple object tracking in urban mixed traffic,” in IEEE Winter
Conference on Applications of Computer Vision, 2014, pp. 885–892.

[34] B. Guidi and L. Ricci, “Aggregation techniques for the internet
of things: An overview,” in The Internet of Things for Smart Urban
Ecosystems. Springer, 2019, pp. 151–176.

[35] V. Moysiadis, P. Sarigiannidis, and I. Moscholios, “Towards dis-
tributed data management in fog computing,” Wireless Communi-
cations and Mobile Computing, vol. 2018, 2018.

[36] B. Diène, J. J. Rodrigues, O. Diallo, E. H. M. Ndoye, and V. V.
Korotaev, “Data management techniques for internet of things,”
Mechanical Systems and Signal Processing, vol. 138, p. 106564, 2020.

[37] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea:
Latency-aware video analytics on edge computing platform,” in
2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS), 2017, pp. 2573–2574.

[38] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan, “Cachier:
Edge-caching for recognition applications,” in 2017 IEEE 37th
international conference on distributed computing systems (ICDCS).
IEEE, 2017, pp. 276–286.

[39] B. Ali, M. A. Pasha, S. ul Islam, H. Song, and R. Buyya,
“A volunteer-supported fog computing environment for delay-
sensitive iot applications,” IEEE Internet of Things Journal, vol. 8,
no. 5, pp. 3822–3830, 2020.

[40] M. Selimi, L. Cerdà-Alabern, M. Sánchez-Artigas, F. Freitag, and
L. Veiga, “Practical service placement approach for microservices
architecture,” in 2017 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), 2017, pp. 401–410.

[41] T. Hamrouni, S. Slimani, and F. B. Charrada, “A survey of dynamic
replication and replica selection strategies based on data mining
techniques in data grids,” Engineering Applications of Artificial
Intelligence, vol. 48, pp. 140–158, 2016.

[42] P. Kathiravelu, P. Van Roy, and L. Veiga, “Composing network
service chains at the edge: A resilient and adaptive software-
defined approach,” Transactions on Emerging Telecommunications
Technologies, vol. 29, no. 11, p. e3489, 2018.

[43] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, S. U. Khan, and P. Li, “A
double deep q-learning model for energy-efficient edge schedul-
ing,” IEEE Transactions on Services Computing, vol. 12, no. 5, pp.
739–749, 2018.

[44] Q. Luo, C. Li, T. Luan, and W. Shi, “Minimizing the delay and cost
of computation offloading for vehicular edge computing,” IEEE
Transactions on Services Computing, 2021.

[45] D. Wang, Y. Peng, X. Ma, W. Ding, H. Jiang, F. Chen, and J. Liu,
“Adaptive wireless video streaming based on edge computing:
Opportunities and approaches,” IEEE Transactions on services Com-
puting, vol. 12, no. 5, pp. 685–697, 2018.

[46] Y. Liu, Q. He, D. Zheng, X. Xia, F. Chen, and B. Zhang, “Data
caching optimization in the edge computing environment,” IEEE
Transactions on Services Computing, 2020.

[47] M. Malensek, S. L. Pallickara, and S. Pallickara, “Hermes: Fed-
erating fog and cloud domains to support query evaluations in
continuous sensing environments,” IEEE Cloud Computing, vol. 4,
no. 2, pp. 54–62, 2017.

Ivan Lujic is a PhD candidate at the Institute of
Information Systems Engineering of the Vienna
University of Technology, Austria. In 2018 he re-
ceived a scholarship by netidee, Austria’s largest
Internet funding initiative, by the Internet Foun-
dation Austria (IPA). He received his master’s
degree in Computer Science in 2016 from the
University of Split, Croatia. His main research
interests are data management strategies for
near real-time Cloud/Edge analytics.

Vincenzo De Maio received his PhD in 2016 at
the University of Innsbruck, Austria. His research
in the area of parallel and distributed systems
comprises energy-aware Cloud computing and
scheduling. Since 2017, he is a postdoctoral re-
searcher at the Institute of Information Systems
Engineering of the Vienna University of Technol-
ogy. He authored different conference and jour-
nal publications on the topic of energy efficiency
and modeling for Cloud and Edge computing.

Srikumar Venugopal is a Research Scientist
in IBM Research Europe. His research inter-
ests lie in the area of large-scale distributed
systems, specifically in the topics of elasticity,
resource management, cloud middleware, and
data-intensive computing. He has published over
50 refereed papers and has held academic po-
sitions at UNSW Australia and the University of
Melbourne. He obtained his Ph.D. from Univer-
sity of Melbourne in 2006.

Ivona Brandic is a Professor at Vienna Univer-
sity of Technology. In 2015 she was awarded
FWF START prize, the highest Austrian award
for young researchers. She received her PhD
degree in 2007 from Vienna University of Tech-
nology. In 2011 she received the Distinguished
Young Scientist Award from the Vienna Univer-
sity of Technology for her project on the Holis-
tic Energy Efficient Hybrid Clouds. Her main
research interests are cloud computing, large
scale distributed systems, energy efficiency,

QoS and autonomic computing.


